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Abstract—It is proposed to use polynomial codes in the design of self-checking discrete devices
with computation control via several diagnostic attributes. A fast algorithm is developed to
obtain functions describing check symbols of polynomial codes in the form of logical expressions.
As is shown, encoders of polynomial codes can be referred to devices of three types: 1) those
with only self-dual Boolean functions realized at the outputs, 2) those with only nearly self-dual
(self-quasidual) Boolean functions realized at the outputs, and 3) those with both self-dual and
self-quasidual Boolean functions realized at the outputs. A classification of polynomial codes
considering this feature is presented. The structural diagram of computation control at the
outputs of self-dual discrete devices via several diagnostic attributes is described. A novel
algorithm is proposed to design a fully self-checking discrete device with computation control
via several diagnostic attributes. In contrast to the well-known ones, this algorithm considers
the nature of errors occurring at the outputs of discrete devices and their preliminary detection
by checkers of self-dual and/or self-quasidual signals. The results can be used in the development
of automated design tools for discrete devices for a wide range of applications.
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control of self-duality of signals, control of self-quasiduality of signals, polynomial codes

DOI: 10.31857/S0005117925050038

1. INTRODUCTION

The growing complexity of the developed and implemented technical systems that support criti-
cal industrial processes, as well as the increase in their performance and the appearance of advanced
functionality, including artificial intelligence, require special attention to the reliability and safety
of operation. In this regard, the most important aspect is to provide devices with the ability to
identify faults during operation.

When designing discrete systems and control devices, their structures are endowed with various
properties to easily ensure the detection of occurring faults. There exist methods for designing
controllable devices [1] and developing self-checking structures for them [2]. Such methods apply to
any critical-purpose systems, including those with rarely changing input data (e.g., control systems
in the nuclear industry, electrical interlocking in railway transport, air defense systems, etc.). In
such systems, hidden faults and the accumulation of errors are not allowed: one way or another,
they will ultimately violate the readiness property of the control algorithm [3, 4].
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DESIGN OF SELF-CHECKING DISCRETE DEVICES 403

The self-checking implementation of discrete devices is required to detect their faults in due
time. This is done by various methods with the introduction of structural redundancy according to
definite algorithms, e.g., state coding and the use of self-checking concurrent error-detection (CED)
circuits [5].

An effective approach to implementing self-checking CED circuits involves the so-called data
inversion: all input and output signals are represented as sequences 0101. . . 01 and 1010. . . 10
instead of constant values 0 and 1 [6]. This approach to implementing self-checking discrete devices
is associated with using hardware redundancy and, moreover, temporal redundancy. It includes
computation control via a definite diagnostic attribute, considering the constant change of input
signals and the supply of input argument sets in pairs, i.e., the operating and check sets of argument
values. Self-dual functions and Boolean functions [7], “close” to the former, possess the peculiarities
that can be considered when organizing diagnostic support in this operation mode. The issues
of implementing self-dual discrete devices were studied in several research works, e.g., [6, 8–11].
Also, note three monographs covering the basic results from the theory of self-dual discrete device
design [12–14].

Computation control via the self-duality attribute requires the self-dual implementation of dis-
crete devices, implying an appropriate structure to describe all their outputs by self-dual functions.
Not all discrete devices are self-dual. Here are some examples: a full adder, a majority element,
encoders of some separable block codes, etc. [6]. However, since the number of self-dual functions
of t variables equals 22

t−1, it is possible to design Cm
22t−1

combinational devices with m� 22
t−1

outputs. For example, for t = 4 and m = 4, the number of different self-dual combinational discrete
devices reaches 174 792 640. In addition, any structure of a combinational discrete device can be
transformed into a self-dual one using only a single variable based on the well-known Shannon
decomposition [15]. For a self-dual implementation of memory devices, it suffices to make the com-
binational parts self-dual [6]. The design peculiarities of self-dual discrete devices are well-studied;
for example, see [9].

In this paper, the reader’s attention is focused on the issues of organizing computation control at
the outputs of self-dual discrete devices, using not only the diagnostic attribute of signal self-duality
but also additional attributes. As shown by numerous experiments, this self-checking device design
approach allows increasing checkability (in terms of error observability) under a smaller level of
hardware redundancy compared to the well-known duplication method [16]. This effect is achieved
by using properties of some noise-immune codes with self-dual and “close” functions describing
their check symbols [17]. As such, we consider a wide class of polynomial, or algebraic, codes [18].

2. POLYNOMIAL CODES AND THEIR PECULIARITIES

2.1. Construction Principles of Polynomial Codes

Polynomial codes are based on the division, with remainder (residue), of binary polynomials
corresponding to data messages. When dividing different polynomials of degree q by a generating
polynomial G(y), 2q residues are obtained. Each check symbol of the polynomial code is thus
described by a logical expression containing only mod M = 2 addition (the XOR operation) with
the values of definite data symbols. For the sake of simplicity, let the functions describing the check
symbols of the codewords of polynomial codes be called check functions.

When forming the codewords of polynomial codes, each bit of the code vector is assigned a
variable y with degree j , which corresponds to the bit location: the least significant bit is assigned
the value j = 0, the next the value j = 1, and so on. The algebraic representation of the code vector
is obtained by multiplying the value of yj by the value of the corresponding bit. For example, the
codeword < 1011 > can be written as a polynomial as follows: 1× y3 + 0× y2 + 1× y1 + 1× y0.
By removing the zero terms, we have the polynomial y3 + y + 1.
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Fig. 1. The division of polynomials with residue: an illustrative example.

To form the codeword V (y) of a polynomial code, the residual polynomial R(y) is deter-
mined by dividing the polynomial M(y), with the factor yn−m, by the generating polynomial [18]:
yn−mM(y) = G(y)Q(y)+R(y), where Q(y) and R(y) denote the quotient and residue from dividing
yn−mM(y) by G(y). In this case, the residue R(y) will be the check vector occupying the k least
significant bits of the codeword of length n. The m most significant bits will correspond to the
data vector.

We encode the data vector < 1011 > by a polynomial code with the generating polynomial
y2 + 1. This polynomial has degree 2. (It must not exceed the degree of the data polynomial.) When
multiplication is performed, the polynomial yn−mM(y) takes the form y2(y3+y+1) = y5+y3+y2.

Let us divide it by the generating polynomial y2 + 1 (Fig. 1).

The polynomial corresponding to the codeword is obtained by summing the polynomials
yn−mM(y) and R(y): y5 + y3 + y2 + 1. Thus, the encoded message becomes < 101101 > (instead
of the original combination < 1011 >). In fact, the data vector has been supplemented by the check
vector < 01 >.

Since a generating polynomial can be mapped into a binary number, we will use the decimal
equivalent N of this binary number to indicate the generating polynomial. Some error detection
properties in CED circuits based on polynomial codes with different values of N were investigated
in [19, 20]. Note that the generating polynomial G(y) is chosen based on the condition of maximum
error detection. For example, there is no sense in choosing y0 as a generating polynomial: when
dividing any polynomial of arbitrary degree by this polynomial, the residue will always be 0. (Also,
zero residue is obtained when dividing by several polynomials even of the highest degree, e.g.,
y2 or y3.) Such polynomials allow detecting no errors in the code vector. We exclude from further
analysis the generating polynomials without the free term y0 (the numbers N corresponding to such
polynomials are even). Therefore, we will consider polynomial codes whose generating polynomials
correspond to odd numbers N . Only for such polynomials is it possible to obtain a complete set of
check vectors with k bits and, accordingly, easier to provide the full self-checking of encoders and
checkers of these codes in CED circuits [20].

2.2. Logical Expressions for the Check Functions of Polynomial Codes

As a rule, the values of check symbols for polynomial codes are obtained using shift registers [18],
which is due to the specifics of their application. However, in some applications of polynomial
codes, polynomial code encoders representing combinational circuits are required. One example
is the design of CED circuits for discrete devices. When constructing an encoder, one needs a
formula describing each check symbol of a polynomial code, since this device should be universal
and generate a check vector on the incoming data vector in one cycle.
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The following trivial method can be used to get formulas for the check symbols of a polynomial
code: for the complete set of data vectors with m bits, compute the values of check symbols and
form check vectors; then, for each check symbol, obtain logical expressions. Based on such functions,
the encoder of the polynomial code under consideration (a combinational circuit) is easily designed.

To get logical expressions for the check functions, it is necessary to determine the values of
all check symbols when substituting as arguments the Boolean vectors corresponding to the code
data vectors from the complete set 2m. Here, m denotes the number of arguments. However, this
operation becomes rather computationally intensive even for m � 6. The number of data vectors
can be reduced to m by utilizing the following result.

Theorem 1. To obtain functions describing the check symbols of polynomial codes, it is necessary
and sufficient to determine the values of check symbols when substituting the arguments from data
vectors with weight r = 1.

The proof of this theorem is given in the Appendix.

Theorem 1 leads to an algorithm for determining logical expressions for the check functions of
a polynomial code.

Algorithm 1. Rules to form check functions for polynomial codes:

1. Specify a generating polynomial N and the number m of bits in the data vector.

2. Determine the number of bits in the check vectors, k = �log2 N�.
3. Form the set Q of data vectors with weight r = 1 and cardinality |Q| = m. Rank the data

vectors by the significant bit precedence and compile their list.

4. Let i = 1.

5. Consider the ith data vector and determine the values of bits of the check vector by division.

6. Compile formulas for check functions: if the value of the check symbol equals 1, then include
the ith data bit in the formula; otherwise, do not.

7. Write the bits in formulas through the XOR sign.

8. Let i := i+ 1.

9. i+ 1 > m? If “yes,” proceed to Step 10; otherwise, get back to Step 5.

10. The formulas have been obtained.

Using Algorithm 1, we obtain the formulas for the check functions of the above polynomial code
with N = 13 and m = 6. All the data vectors with weight r = 1 are provided in Table 1.

Table 1. The codewords of a polynomial code with the generating polynomial
corresponding to N = 13 given m = 3, for data vectors with weight r = 1
m y6 y5 y4 y3 y2 y1 g3 g2 g1

6 1 0 0 0 0 0 1 0 1

5 0 1 0 0 0 0 1 1 1

4 0 0 1 0 0 0 1 1 0

3 0 0 0 1 0 0 0 1 1

2 0 0 0 0 1 0 1 0 0

1 0 0 0 0 0 1 0 1 0

Based on Table 1, it is easy to get the formula for each function gj . One should proceed as
follows.

Algorithm 2. Rules to form the check functions of polynomial codes by the codeword table for
data vectors with weight r = 1:

1. Determine m codewords for the data vectors with weight r = 1.

2. Let j = 1.
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3. Consider the j th column corresponding to the j th check function.

4. Compile the formula by including those data symbols fi for which 1 is written in the j th
column.

5. Let j := j + 1.

6. j+1> k? If “yes,” proceed to Step 7; otherwise, get back to Step 3.

7. The formulas have been obtained.

We arrive at the following system of Boolean functions:⎧⎪⎪⎨
⎪⎪⎩
g1 = y3 ⊕ y5 ⊕ y6

g2 = y1 ⊕ y3 ⊕ y4 ⊕ y5

g3 = y2 ⊕ y4 ⊕ y5 ⊕ y6.

Algorithms 1 and 2 yield formulas for any polynomial code with the linear rate of computational
intensity. They can be used to design encoders of polynomial codes as part of checkers in CED
circuits.

3. A CLASSIFICATION OF POLYNOMIAL CODES BY THE TYPE OF CHECK FUNCTIONS

3.1. Special Properties of Polynomial Codes

The check functions of polynomial codes are linear. The following peculiarities of linear Boolean
functions are well known [17].

Theorem 2. A linear Boolean function is self-dual only if it has an odd number of essential
arguments.

Theorem 3. A linear Boolean function is self-quasidual only if it has an even number of essential
arguments.

Let us recall several well-known definitions [7].

Definition 1. A function belongs to the class of self-dual Boolean functions if it takes opposite
values when inverting all its arguments:

SD =
{
f(x1, x2, . . . , xt)|f(x1, x2, . . . , xt) = f(x1, x2, . . . , xt)

}
.

Definition 2. A function belongs to the class of self-quasidual1 Boolean functions if it takes the
same values when inverting all its arguments:

SQD =
{
f(x1, x2, . . . , xt)|f(x1, x2, . . . , xt) = f(x1, x2, . . . , xt)

}
.

According to Theorems 2 and 3, polynomial codes with different generating polynomials N and
with different number m of data symbols belong to one of the three classes: codes whose encoders
are described only by self-dual Boolean functions (class I), codes whose encoders are described only
by self-quasidual Boolean functions (class II), and codes whose encoders are described by both
self-dual and self-quasidual Boolean functions (class III).

Definition 3. Discrete devices whose outputs are described only by self-dual functions are called
self-dual devices (SD devices).

Definition 4. Discrete devices whose outputs are described only by self-quasidual functions are
called self-quasidual devices (SQD devices).

Definition 5. Discrete devices whose outputs are described, in one part, by self-dual Boolean
functions and, in the other part, by self-quasidual Boolean functions are called self-dual/self-
quasidual devices (SD/SQD devices).
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Fig. 2. The encoders of polynomial codes: classification.

Thus, the encoders of polynomial codes may be devices of only three types (Fig. 2).

It is necessary to emphasize the following important peculiarities inherent in the encoders of
polynomial codes [17].

Theorem 4. In the circuit implementation of a linear Boolean function with an odd number of
essential arguments, computation control via the self-duality attribute does not check faults of logic
gates connected by paths with an even number of inputs.

Theorem 5. In the circuit implementation of a linear Boolean function with an even number of
essential arguments, computation control via the self-quasiduality attribute does not check faults of
logic gates connected by paths with an even number of inputs.

According to Theorems 4 and 5, it is impossible to design a fully self-checking CED circuit
via the attribute of self-duality and/or self-quasiduality of check functions since it is impossible to
detect all faults of polynomial encoders when controlling only such attributes. Indeed, the errors
caused by faults of XORs in linear circuits are always translated to their outputs, and computation
control via the attribute of self-duality or self-quasiduality checks the two-rail property of the spatial
signal but not of that coming in parallel to the checker’s inputs. Therefore, under the conditions
of Theorems 4 and 5, the error is manifested when supplying both sets of argument values to
the inputs of the device and is not detected by the checker of a self-dual or self-quasidual signal.
Additional control via one more diagnostic attribute is required. The codeword’s belonging to the
chosen polynomial code may be such an attribute. Indeed, on each set of argument values in the
presence of an error, either the correct values of all bits of the check vector will be computed or a
distortion will occur at least in one bit. The checker of a polynomial code will detect this event.
Thus, polynomial codes can be effectively used in the structure of computation control via several
diagnostic attributes, which will be discussed below.

3.2. The Classes of Polynomial Codes by the Encoder Type

Based on the properties of linear functions and the logical expressions for the functions describing
the check symbols of polynomial codes (see the simple method above), we have classified polynomial
codes by the type of their encoders used in checkers within CED circuits [21]. Table 2 gives a
fragment of this classification.

The first column in the table contains the numbers N corresponding to the generating polynomi-
als. Table 2 provides all generating polynomials for constructing polynomial codes with k = 1, . . . , 6
check symbols.

In practice, a convenient representation for different classes of polynomial codes is a matrix form
that indicates the belonging of an encoder of a particular code with a given generating polynomial
to a certain class under a given number of data symbols. Table 3 presents such a matrix for codes

1 The author [7] used the somewhat inappropriate term of self-antidual functions to denote self-quasidual ones.
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with k � 4 check symbols. Here, the cells at the intersection of particular rows and columns are
set off in three different colors: black, gray, and white (meaning that the encoder of the polynomial
code belongs to the class of SD devices, SQD devices, and SD/SQD devices, respectively).

Table 2. The detailed classification of polynomial codes by encoder types

N SD SQD SD/SQD

k = 1

3 m ≡ 1(mod2) m ≡ 0(mod2) –

k = 2

5 m ≡ 2(mod4) m ≡ 0(mod4) m ≡ 1(mod2)

7 m ≡ 2(mod3) m ≡ 0(mod3) m ≡ 1(mod3)

k = 3

9 m ≡ 3(mod6) m ≡ 0(mod6) m ≡ α(mod8), α ∈ {0, 1, . . . , 5}\{0, 3}
11 m ≡ 2(mod7) m ≡ 0(mod7) m ≡ α(mod7), α ∈ {0, 1, . . . , 6}\{0, 2}
13 m ≡ 6(mod7) m ≡ 0(mod7) m ≡ α(mod7), α ∈ {0, 1, . . . , 6}\{0, 6}
15 – m ≡ 0(mod4) m ≡ α(mod7), α ∈ {1, 2, 3}

k = 4

17 m ≡ 4(mod8) m ≡ 0(mod8) m ≡ α(mod8), α ∈ {0, 1, . . . , 7}\{0, 4}
19 m ≡ 3(mod15) m ≡ 0(mod15) m ≡ α(mod15), α ∈ {0, 1, . . . , 14}\{0, 3}
21 – m ≡ 0(mod6) m ≡ α(mod6), α ∈ {1, 2, 3, 4, 5}
23 m ≡ 2(mod14) m ≡ 0(mod14) m ≡ α(mod14), α ∈ {0, 1, . . . , 13}\{0, 2}
25 m ≡ 8(mod15) m ≡ 0(mod15) m ≡ α(mod15), α ∈ {0, 1, . . . , 14}\{0, 8}
27 m ≡ 4(mod12) m ≡ 0(mod12) m ≡ α(mod12), α ∈ {0, 1, . . . , 11}\{0, 4}
29 m ≡ 6(mod14) m ≡ 0(mod14) m ≡ α(mod14), α ∈ {0, 1, . . . , 13}\{0, 6}
31 m ≡ 4(mod5) m ≡ 0(mod5) m ≡ α(mod5), α ∈ {1, 2, 3}

k = 5

33 m ≡ 5(mod10) m ≡ 0(mod10) m ≡ α(mod10), α ∈ {0, 1, . . . , 9}\{0, 5}
35 m ≡ 2(mod42) m ≡ α(mod42),

α ∈ {0, 20, 31}
m ≡ α(mod42),

α ∈ {0, 1, . . . , 41}\{0, 2, 20, 31}
37 m ≡ α(mod62),

α ∈ {40, 56}
m ≡ α(mod62),

α ∈ {0, 38}
m ≡ α(mod62),

α ∈ {0, 1, . . . , 61}\{0, 38, 40, 56}
39 m ≡ 1(mod28) m ≡ 0(mod28) m ≡ α(mod28), α ∈ {0, 1, . . . , 27}\{0, 1}
41 m ≡ α(mod62),

α ∈ {18, 60}
m ≡ α(mod62),
α ∈ {0, 39, 62}

m ≡ α(mod62),
α ∈ {0, 1, . . . , 61}\{0, 18, 39, 60, 62}

43 m ≡ 11(mod30) m ≡ 0(mod30) m ≡ α(mod30), α ∈ {0, 1, . . . , 29}\{0, 11}
45 – m ≡ 0(mod12) m ≡ α(mod12), α ∈ {1, 2, . . . , 11}
47 m ≡ 2(mod31) m ≡ 0(mod31) m ≡ α(mod31), α ∈ {0, 1, . . . , 30}\{0, 2}
49 – m ≡ 0(mod21) m ≡ α(mod21), α ∈ {1, 2, . . . , 20}
51 m ≡ 5(mod8) m ≡ 0(mod8) m ≡ α(mod8), α ∈ {0, 1, . . . , 7}\{0, 5}
53 m ≡ 1(mod30) m ≡ 0(mod30) m ≡ α(mod30), α ∈ {0, 1, . . . , 29}\{0, 1}
55 m ≡ α(mod62),

α ∈ {34, 42}
m ≡ α(mod62),

α ∈ {0, 10}
m ≡ α(mod62),

α ∈ {0, 1, . . . , 62}\{0, 10, 34, 42}
57 m ≡ 17(mod28) m ≡ 0(mod28) m ≡ α(mod28), α ∈ {0, 1, . . . , 27}\{0, 17}
59 m ≡ 18(mod31) m ≡ 0(mod31) m ≡ α(mod31), α ∈ {0, 1, . . . , 30}\{0, 18}
61 m ≡ 22(mod31) m ≡ 0(mod31) m ≡ α(mod31), α ∈ {0, 1, . . . , 30}\{0, 22}
63 – m ≡ 0(mod6) m ≡ α(mod6), α ∈ {1, 2, . . . , 5}
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Table 3. The matrix of polynomial codes with k = 1, . . . , 4 check symbols

m

N

k=1 k = 2 k = 3 k = 4

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

4. USING POLYNOMIAL CODES IN THE DESIGN OF SELF-CHECKING
DISCRETE DEVICES WITH COMPUTATION CONTROL

VIA SEVERAL DIAGNOSTIC ATTRIBUTES

4.1. The Structural Diagram of a CED Circuit

Consider the peculiarities of using polynomial codes in the design of self-checking discrete devices
with computation control via several diagnostic attributes. The approach to implementing CED
circuits via several diagnostic attributes simultaneously was used earlier in [22] when organizing
computation control of devices based on the principle of Boolean signal correction and the properties
of balanced codes of the form “r of 2r,” where r specifies the weight of a codeword. It was also
investigated in [16] in the context of computation control via several diagnostic attributes using
the well-known Hamming codes. Figure 3 shows the structural diagram of computation control via
several diagnostic attributes.
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Fig. 3. The structural diagram of a CED circuit for self-dual discrete devices via several diagnostic attributes.

In this structure, the initial discrete device (the object under diagnosis) is a block F (X) in-
tended to compute the values of Boolean functions f1(X), f2(X), . . . , fm−1(X), fm(X) when sup-
plying the sets of argument values < X >=< xtxt−1 . . . x2x1 > to the inputs. This object is an SD
device. A special CED circuit with several diagnostic attributes is used to control computations
at the outputs of the block F (X). The CED circuit is implemented on the basis of polynomial
codes. The object’s outputs are identified with a data vector with m bits. Given the values of
functions f1(X), f2(X), . . . , fm−1(X), fm(X), the block G(F ) forms the values of check symbols
g1(X), g2(X), . . . , gk−1(X), gk(X) for the codewords of a selected polynomial code, thus generating
a particular check vector. On the other hand, the block G(X) generates the values of check symbols
g′1(X), g′2(X), . . . , g′k−1(X), g′k(X) for the codewords of the same polynomial code when supplying
the sets of argument values < X >=< xtxt−1 . . . x2x1 > to the inputs. This solution provides a
computation control subcircuit based on the belonging of the codewords formed in the CED circuit
to the selected polynomial code. More precisely, the same-name outputs of the blocks G(F ) and
G(X) are connected to the inputs of the two-rail comparator kTRC1, which compares k pairs of
signals at the inputs and forms a single pair of check signals z01(X) and z11(X). This block is imple-
mented in the two-rail logic and represents a two-rail compression circuit based on k − 1 elementary
two-rail checkers (TRC) [23]. Therefore, the signals from one of the blocks G(F ) or G(X) are pre-
inverted. (In Fig. 3, these are the signals from G(X) are inverted.) In general, when designing the
block G(X), one can immediately receive the inverted signals g1(X), g2(X), . . . , gk−1(X), gk(X);
then inverters at the comparator’s inputs will not be needed. Computation errors at the outputs of
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DESIGN OF SELF-CHECKING DISCRETE DEVICES 411

the blocks G(F ) and G(X), as well as in the comparator’s structure, violate the two-rail property
of the signal at the outputs z01(X) and z11(X), which indirectly indicates the presence of faults
in the structure of the entire system. This structure of computation control (with check symbols
supplementing data symbols) has been studied quite well [24].

Since the outputs of the block G(F ) are described by self-dual and/or self-quasidual functions,
the self-duality/self-quasiduality control subcircuit is used for the signals g1(X), gk−1(X), gk(X) to
control computations. For self-duality, the block k*SDC1 is installed to control k* self-dual signals
and generate one pair of two-rail outputs. Similarly, for self-quasiduality, the block (k − k*)SQDC1
is installed to control k − k* self-quasidual signals and generate one pair of two-rail outputs. These
blocks are built based on compression circuits for self-dual and self-quasidual signals [11] and
checkers of self-dual and self-quasidual signals [25]. The outputs of both blocks k*SDC1 and
(k − k*)SQDC1 are connected to the inputs of the elementary compression block TRC of two-rail
signals. Its outputs are the check outputs z02(X) and z12(X) of the computation control subcircuit
via self-duality/self-quasiduality. The outputs of the computation control subcircuits via different
diagnostic attributes are connected to the inputs of one block TRC . Its outputs z0(X) and z1(X)
are the check outputs of the CED circuit.

The operation principles and tuning of control devices for self-dual and self-quasidual signals
were described in [25]. The entire structure involves temporal redundancy and the data inversion
mode [6]. In this case, signals are represented as pulse sequences: zero is encoded by the sequence
0101. . . 01 and one by 1010. . . 10. As a result, the operation of devices is implemented by supplying
sets of input argument values in pairs: the first is an operating set, and the second is a check set.
The sets of input arguments in a pair are orthogonal in all variables (inverse in all variables). This
peculiarity of the computation control approach requires a rectangular pulse generator G , forming
a signal a with a pulse ratio of 2. A sequence of signals corresponding to the input variables is
obtained using a cascade of two-input XORs: their first inputs receive signals from particular inputs
and the second ones the signal a. The same signal can be supplied to the inputs of the blocks F (X)
and G(X) when they are designed from non-self-dual structures using the Shannon decomposition
with a single variable. The signal a is also required for the operation of self-duality/self-quasiduality
checkers.

According to [16], the computation control structure with several diagnostic attributes has better
checkability in terms of error observability at the outputs of objects under diagnosis, owing to the
operation mode and the possibility of versatile computation control.

Note the following important peculiarity of the computation control structure with several di-
agnostic attributes.

Theorem 6. In the CED circuit with computation control via several diagnostic attributes, any
single errors are detected at the outputs of the computation control subcircuit by the attributes of
the self-duality and/or self-quasiduality of the signals formed.

The proof of this result is given in the Appendix.

In practice, Theorem 6 simplifies the design of CED circuits with detection of any errors at the
outputs of the object under diagnosis by excluding from consideration the object’s faults that cause
single errors at their outputs.

4.2. An Algorithm for Selecting the Generating Polynomial

The general algorithm for designing a self-checking CED circuit with several diagnostic attributes
using polynomial codes contains the following steps.

Algorithm 3. Rules to design a CED circuit with several diagnostic attributes using polynomial
codes:

1. Consider the structure of a combinational object under diagnosis with m outputs and t
inputs.
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2. From the complete set Ω of faults within a given model (e.g., single stuck-at faults at the
outputs of logic gates), select a subset Ω′ ⊂ Ω of only those occurring at the outputs of logic gates
connected by paths with two or more outputs of the object under diagnosis.

3. If Ω′ = ∅, organize computation control using a polynomial code with a generating polynomial
N = 3 and design a CED circuit with several diagnostic attributes. If Ω′ = ∅, consider the possibil-
ities of error detection using polynomial codes with the generating polynomials N = 3 + 2i, i ∈ N.
In this case, take only polynomials for which k = �log2 N� < m. In other words, the maximum value
of this number is N = 2m−1 − 1, and the list contains the numbersN = 3+2i, i = {1, . . . , 2m−2−2}.

4. Simulate the operation of the self-dual device by supplying all pairs (Aj
i , B

j
2n−1−i) to its

inputs, where Aj
i and Bj

2n−1−i are the values of the j th function formed at the j th output of the
object under diagnosis under an input combination corresponding to the decimal equivalent of i
and 2n − 1− i, sets of argument values, and the impact of single stuck-at faults from the set Ω′.
Fix the errors caused by them at the outputs.

5. Compile the list of generating polynomials N = 3 + 2i, i = {1, 2, . . . , 2m−2 − 2}, and arrange
them in ascending order of N . With such an ordering, one first considers the generating polynomials
yielding codes with the smallest number of check symbols.

6. Take the first member of this list and remove it from there.

7. On the complete family of the sets of argument values, determine the values of the functions
defining the check symbols for the codewords of the polynomial code with the chosen generating
polynomial N .

8. Check error detection by computation control via the self-duality and/or self-quasiduality
attribute of the check functions obtained. From the complete set Ψ of errors occurring at the
circuit outputs, eliminate single errors and all errors with multiplicities d � 2, detected by compu-
tation control via the self-duality and/or self-quasiduality attribute. Form the set Ψ′ ⊂ Ψ of errors
undetectable via this attribute.

9. If Ψ′ = ∅, organize computation control using a polynomial code with the generating poly-
nomial corresponding to the number N . If Ψ′ = ∅, check the detection of errors from the set Ψ′

using the polynomial code selected.

10. If all errors are detected, design the CED circuit based on the polynomial code selected;
otherwise, take the next generating polynomial from the list (if non-empty) and return to Step 4 of
the algorithm. In the case of the empty list, it is impossible to design a fully self-checking structure
with computation control via several diagnostic attributes.

Consider an example of computation control using this algorithm for a self-dual discrete device
described by the following system of Boolean functions:

f1 = x1x2︸ ︷︷ ︸
1

∨x1x4︸ ︷︷ ︸
2

∨x2x4︸ ︷︷ ︸
3

,

f2 = x3x4︸ ︷︷ ︸
4

∨x1x4︸ ︷︷ ︸
5

∨x1x3︸ ︷︷ ︸
6

,

f3 = x1x2x3︸ ︷︷ ︸
7

∨x2x3x4︸ ︷︷ ︸
8

∨x2x3x4︸ ︷︷ ︸
9

∨x1x2x3︸ ︷︷ ︸
10

,

f4 = x2x3x4︸ ︷︷ ︸
8

∨x2x3x4︸ ︷︷ ︸
9

∨x2x3x4︸ ︷︷ ︸
11

∨x1x3x4︸ ︷︷ ︸
12

∨x1x2x3x4︸ ︷︷ ︸
13

;

f5 = x1x4︸ ︷︷ ︸
2

∨x1x3︸ ︷︷ ︸
14

∨x1x2︸ ︷︷ ︸
15

∨x2x3x4︸ ︷︷ ︸
16

,

f6 = x1x3x4︸ ︷︷ ︸
17

∨x1x3x4︸ ︷︷ ︸
18

∨x1x2x3︸ ︷︷ ︸
19

∨x1x3x4︸ ︷︷ ︸
20

∨x1x2x3x4︸ ︷︷ ︸
21

.
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At Step 1 of the algorithm, we take a particular two-level implementation of the device by the
above formulas, with the inversions of arguments transferred to the inputs of the first-cascade gates.
Let all non-repeating conjunctions in the expressions be numbered. The structural diagram of this
implementation is omitted here due to its bulkiness. It contains 21 multi-input AND gates in the
first cascade and 6 multi-input OR gates in the second one.

At Steps 2 and 3, we determine the subset of single stuck-at faults of logic gates causing multiple
errors at the device outputs and error detection possibilities using a polynomial code with the
generating polynomial N = 3. Multiple errors at the device outputs can be caused only by the
faults of the gates realizing conjunctions with numbers 2, 8, and 9. (They correspond to possible
simultaneous distortions in the values of the functions f1 and f5, the functions f3 and f4, and the
functions f3 and f4, respectively.) The polynomial code with the generating polynomial N = 3 is
not suitable for computation control in the case considered.

At Step 4, we simulate the operation of the device under single stuck-at faults and memorize
the results in tabular form.

We compile the list of generating polynomials N = 3 + 2i, i = {1, . . . , 14}.
Next, we choose the polynomial corresponding to the number N = 5, removing it from the list.

We check the error detection possibilities at the outputs of the device.

According to the simulation results, the polynomial code with the chosen generating polynomial
allows detecting all multiple errors caused by the faults of the gates realizing conjunctions with
numbers 2, 8, and 9, except for five double errors caused by a stuck-at-1 fault of the gate realizing
conjunction with number 2. (These five faults are detected neither by self-duality control of the
functions describing the check symbols of the codewords (see the matrix in Table 3) nor by the
control by the belonging of the check vector to this polynomial code.) The cardinality of the set
is |Ψ′| �= 5. Hence, it is necessary to choose the next polynomial from the updated list. This
polynomial corresponds to the number N = 7.

We perform the same actions as before. Here, judging by the matrix in Table 3, computations
are controlled via the following attributes: the belonging of the functions describing the check
symbols of the codewords to the class of self-quasidual ones and the belonging of the check vector
to the codewords of the polynomial code selected. According to the simulation results, all multiple
errors are detected by computation control via only one of the diagnostic attributes. Next, we
design the CED circuit with two diagnostic attributes using the polynomial code selected.

Note that computation control via the attributes of self-duality and self-quasiduality insignifi-
cantly complicates CED circuits compared to CED circuits with computation control via polynomial
codes: the compression schemes of self-dual/self-quasidual signals, as well as the checkers of these
signals, have a rather simple structure [11, 25]. Therefore, it is possible to design less redundant
structures than, e.g., in the case of duplication, while obtaining improved checkability in terms of
error observability at the outputs of CED circuits.

An advantage of Algorithm 3 is that, with an appropriate choice of the generating polynomial
from small N = 3 to N = 2m−2 − 2, it is possible to achieve the full detection of errors using codes
with small k , which also affects the performance of CED circuit implementation. A drawback is
the necessity of fault modeling and error detection at the outputs of objects under diagnosis, which
limits the applicability of this method for a sufficiently large number of inputs. The applicability
of the method for CED circuit design in some discrete devices also depends on the complexity of
Boolean functions computed at their outputs [26]. The complexity of the algorithm for construct-
ing a self-checking device can be asymptotically estimated as 2O(t), i.e., the problem is solved in
exponential time with a linear index. Nevertheless, it is always possible to construct CED circuits
using decomposition methods. Besides, considering the structures of objects under diagnosis is
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an effective CED circuit design method when standard modular redundancy-based ones are not
applied.

Note also that polynomial codes detect a large number of errors under high degrees of the
polynomials M(y) and G(y), which is widely used in computation control and data transmission.
However, in the above application of polynomial codes, the degree of the polynomial M(y) is
determined by the number of outputs in the object under diagnosis, whereas the degrees of the
generating polynomials are selected considering the detection of errors caused by faults in the
structures of such objects. As a matter of fact, the earlier the number N is found by Algorithm 3,
the smaller the degree of the residue R(y) will be, and the less structural redundancy the final
self-checking discrete device will have.

5. CONCLUSIONS

Compared to the widely known approaches, the design method proposed above endows the
resulting fully self-checking discrete devices with improved checkability indicators. Moreover, the
method allows detecting a subset of errors in computations under fixed input actions. This is due
to the binary-sequence representation of signals in discrete devices.

The CED circuit design algorithm developed above based on the properties of polynomial codes
involves a sequential search of generating polynomials from the smallest, associated with the num-
ber N = 3, to the corresponding number N = 2m−2 − 2. Under m < 6, the number of generating
polynomials satisfying this condition is small, reducing the possibilities for constructing a fully
self-checking device. Hence, the approach under consideration should be most effective for devices
with sufficiently many outputs: m � 6. As N grows to the limit, the number of check symbols
in the codewords changes from k = 1 to k = m− 1, also increasing the cardinality of the set of
errors detected by polynomial codes. Therefore, the algorithm will be effective when constructing
self-checking devices for almost any structures of objects under diagnosis with m � 6. Nevertheless,
for each particular discrete device, it is necessary to compare the indicators of their self-checking
implementation with those of self-checking implementations obtained by other methods, e.g., du-
plication.

Possible directions of further research include setting various experiments with test discrete
devices and estimating the efficiency indicators of their self-checking implementations, developing
other algorithms for choosing generating polynomials considering the structural peculiarities of
objects under diagnosis and the peculiarities of other linear codes in CED circuit design via sev-
eral diagnostic attributes, and studying the peculiarities of constructing such devices on different
(particularly programmable) element bases.

As we believe, the use of computation control via several diagnostic attributes in the design of
self-checking discrete control devices is a promising and underinvestigated approach to the realiza-
tion of components of highly reliable control systems.

APPENDIX

Proof of Theorem 1.

Necessity . Each check function is described by the general expression gj = fi1 ⊕ fi2 ⊕ . . .⊕ fiq ,
j ∈ {1, k}, i1, i2, . . . , iq ∈ {1, . . . ,m}. To obtain detailed expressions for each check function, it is
necessary to establish significant data symbols. Consider all data vectors with weight r = 1 to
determine sequentially the values of the check symbols by substituting a single significant data
symbol. If the function value is gj = 0, the corresponding data symbol will not affect the particular
check function; otherwise (gj = 1), it will be included in the logical expression describing the check
function.
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Sufficiency . When substituting the data vector with weight r = 1, the value of the function gj
will be determined only by the value of the significant data symbol; hence, it will be included in
the descriptive formula for the corresponding check function. Consider all data vectors with weight
r = 1 to determine all arguments summed in each function gj . This yields the formulas describing
the check symbols of polynomial codes.

Proof of Theorem 6.

All functions of the encoder of a polynomial code are linear: gj = fi1 ⊕ fi2 ⊕ . . .⊕ fiq , j ∈ {1, k},
i1, i2, . . . , iq ∈ {1, . . . ,m}. Consider one of them and suppose the occurrence of a single error at the
output fq ∈ {1, . . . ,m}. Then the value of the function fp is distorted, becoming equal to fp = 0 or
fp = 1. The original expression for the check function is gj = fi1 ⊕ fi2 ⊕ . . . ⊕ fp ⊕ . . .⊕ fiq . Due to
the distortion, it takes the form gj = fi1 ⊕ fi2 ⊕ . . . ⊕ (fp = 0)⊕ . . . ⊕ fiq = fi1 ⊕ fi2 ⊕ . . .⊕ fiq or
gj = fi1 ⊕ fi2 ⊕ . . . ⊕ (fp = 1)⊕ . . .⊕ fiq = fi1 ⊕ fi2 ⊕ . . . ⊕ fiq . In the first case, we have a parity
change in the number of arguments of the original function and its dependence on all variables
except fp. In the second case, the parity of the number of arguments changes as well but, besides,
the function of mod 2 addition is inverted, which preserves all the attributes of belonging to the
classes of self-dual and/or self-quasidual functions. In other words, the function has turned from
self-quasidual/self-dual into self-dual/self-quasidual. Due to the new type, the function will be
detected in the computation control subcircuit with the attribute selected: it will change under a
single error.
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